Digital oilfield

Dynamic Simulation in Deep Water Enhances Operations From Design to Production

Dynamic simulation has proved an effective tool throughout the lifecycle of the deepwater Appomattox project, in large part because of implementation at an early stage.

The Appomattox facility.
Fig. 1—The Appomattox facility.
Source: OTC 30838.

The complete paper discusses how large operations such as Appomattox in the Gulf of Mexico’s deepwater Norphlet formation can use an integrated dynamic simulation-based solution throughout the project life cycle to aid in design verification, operator training, startup support, and real-time surveillance. The authors write that their recommendations and findings can be applied to similar project implementation efforts elsewhere in the industry.

Introduction

The Appomattox development spans Mississippi Canyon Blocks 348, 391, 392, and 393. Peak production rates are estimated to be approximately 175,000 BOE/D, with water injection planned for the future to support reservoir pressures. Appomattox includes a combined cycle steam system, using process waste heat to generate steam. This steam can be used to drive a generator, providing extra power for the facility.

SPE_logo_CMYK_trans_sm.png
Restricted Content
We're sorry, but this content is reserved for SPE Members. If you are a member, please sign in for access. If you are not a member and you find JPT content valuable, we encourage you to become a part of the SPE member community.