Data & Analytics
For more than a century, LSU has shaped petroleum engineering education, but few assets showcase its impact like the PERTT Lab. With six deep test wells and rare reservoir-depth gas-injection capabilities, the facility is helping drive breakthroughs in well control, CO₂ injection, and next-generation energy technologies.
The Norwegian major said it is using artificial intelligence for predictive maintenance throughout its facilities and for interpretation of seismic data from the Norwegian continental shelf.
Even as output hits record highs, a growing recognition of the Permian’s maturity is opening the door for new technologies to improve performance.
-
This work presents the development of fast predictive models and optimization methodologies to evaluate the potential of carbon-dioxide EOR and storage operations quickly in mature oil fields.
-
The authors of this paper apply a deep-learning model for multivariate forecasting of oil production and carbon-dioxide-sequestration efficiency across a range of water-alternating-gas scenarios using field data from six legacy carbon-dioxide enhanced-oil-recovery projects.
-
Experience in subsurface production and lift design is shaping a new generation of geothermal operations built for reliability and scalability.
-
This paper describes a data-driven well-management strategy that optimizes condensate recovery while preserving well productivity.
-
This paper explores the evolving role of the digital petroleum engineer, examines the core technologies they use, assesses the challenges they face, and projects future industry trends.
-
This paper describes an auto-adaptive workflow that leverages a complex interplay between machine learning, physics of fluid flow, and a gradient-free algorithm to enhance the solution of well-placement problems.
-
This paper introduces a system that leverages sophisticated algorithms and user-friendly interfaces to tackle the challenge of developing complex, compartmentalized reservoirs effectively.
-
This paper presents a novel application of artificial intelligence in computer vision for automating blowout-preventer pressure-chart-data extraction, demonstrating significant efficiency gains and a high return on investment.
-
This paper details a data-driven methodology applied in Indonesia to enhance flare-emission visibility and enable targeted reduction strategies by integrating real-time process data with engineering models.
-
Are we in an AI bubble? The question may seem academic to petroleum engineers who are already capitalizing on the momentum of digitalization across the industry, yet any engineer, regardless of their career stage, could be forgiven for feeling overwhelmed by the sheer scope of specialized skills now demanded in this rapidly evolving digital landscape.
Page 1 of 161