Drilling automation

The agreement focuses on improving operational efficiency and consistency through advanced digital tools and real-time data integration.
An innovative approach uses a random-forest-based framework to link logging-while-drilling and multifrequencey seismic data to enable dynamic updates to lithology parameter predictions, enhancing efficiency and robustness of geosteering applications.
This comprehensive review of stuck pipe prediction methods focuses on data frequency, approach to variable selection, types of predictive models, interpretability, and performance assessment with the aim of providing improved guidelines for prediction that can be extended to other drilling abnormalities, such as lost circulation and drilling dysfunctions.

Page 1 of 15