Prediction of miscible water-alternating-gas (WAG) injection performance relies on proper calibration of thermodynamical and petrophysical models. Swelling, miscibility, and stripping phenomena must be captured in the equation of state (EOS), and the oscillations of gas and water saturations require using history-dependent relative permeabilities. This paper provides a robust methodology for miscible CO2 WAG experimental-data acquisition and history matching.
Introduction
Miscible CO2 injection in oil reservoirs leads to low residual oil saturations in the swept areas. However, macroscopic sweeping can be poor because of the high mobility of CO2. One way of improving macroscopic sweep is to inject CO2 in the presence of mobile water to reduce its mobility (in tertiary or WAG modes).
The prediction of WAG efficiency and the sizing of surface installations rely partly on the ability of the three-phase relative-permeability model to calculate proper mobility for each phase in any part of the reservoir.