Environment

Implementation of an Acoustic Automatic Leak-Detection Sonar in the Gulf of Mexico

The authors have developed an active acoustic automatic leak-detection sonar designed to detect hydrocarbon leaks (mono- and multiphase oil and gas) at significant ranges, allowing coverage of wide areas from a single sensor.

jpt-2016-02-sonarfig1.jpg
Fig. 1—Gas-target components on vessel before deployment
Source: OTC 26270

The authors have developed an active acoustic automatic leak-detection sonar (ALDS) designed to detect hydrocarbon leaks (mono- and multiphase oil and gas) at significant ranges, allowing coverage of wide areas from a single sensor. The system’s single subsea sensor offers 360° continuous coverage, providing automatic, robust detection and localization of any leak, followed by an alert within tens of seconds of a leak developing. This paper provides a case study of an experimental program in which the system underwent trials in deep water (2000 m) at the Thunderhorse field in the US Gulf of Mexico (GOM).

Introduction

Most methods for detecting small leaks—for example, passive acoustic detectors that “listen” for the sound of a leak—have very limited range, which makes them suitable for applications such as pipeline surveys but not for wider field coverage. ALDS was developed to address the requirements for a system that can provide leak detection, including the ability to localize the leak, from a single point for a whole drill center.

×
SPE_logo_CMYK_trans_sm.png
Continue Reading with SPE Membership
SPE Members: Please sign in at the top of the page for access to this member-exclusive content. If you are not a member and you find JPT content valuable, we encourage you to become a part of the SPE member community to gain full access.