Processing systems/design

Improving Gas Dehydration With Preinhibited Glycol

The paper discusses dehydration performance of two units in two plants—with preinhibited glycol/antifoam/pH adjuster blend vs. neat glycol with periodic injection of antifoam and pH-adjuster inhibitors. The insights present an opportunity for significant operating and capital costs reduction.

ogf-2017-11-techsynopsis-189114-hero.jpg
OTC 189114

The complete paper discusses the natural-gas-dehydration performance of dehydration units in two different plants using a preinhibited glycol/antifoam/pH adjuster blend vs. neat glycol with periodic injection of antifoam and pH-adjuster inhibitors. The insights made with this new preinhibited-glycol-blend approach present an opportunity for significant reduction in both operating and capital costs for existing and future gas-processing plants as well as a decrease in corrosion rates with prolonged plant life.

Introduction

The use of triethylene glycol (TEG) to strip gas of its water content in an absorption tower (known as a glycol contactor) has gained prominence in the industry. This is because glycol can be regenerated and recycled back into the contactor, making it less operating-expense (OPEX)-intensive. However, this system is not without its disadvantages.

×
SPE_logo_CMYK_trans_sm.png
Continue Reading with SPE Membership
SPE Members: Please sign in at the top of the page for access to this member-exclusive content. If you are not a member and you find JPT content valuable, we encourage you to become a part of the SPE member community to gain full access.