Acidizing/stimulation

Simulator Aids Design, Analysis of Acidizing Jobs With Fluoroboric Acid

This paper presents a novel mathematical model for design and evaluation of fluoroboric acid treatments that takes into account the chemical kinetics and equilibrium aspects of important reactions and fluid flow inside the reservoir rock.

red oil platform with crane in the sea
Getty Images

Matrix acidizing with fluoroboric acid (HBF4) has gained special attention because of its deeper penetration of in-situ generated hydrofluoric (HF) acid and stabilization of formation fines by binding them to the pore surface. While numerous mathematical models exist in the literature for design and evaluation of conventional mud acid treatments, few attempts have been made in developing a laboratory-validated model that can do so for fluoroboric acid treatments. The complete paper presents a novel mathematical model that has been developed that takes into account the chemical kinetics and equilibrium aspects of important reactions and fluid flow inside the reservoir rock.

Mathematical Modeling

Because the complete paper contains numerous equations, it is essential for understanding the authors’ description of their mathematical model.

The authors identify three benefits of their approach from a modeling point of view. First, it reduces the total number of chemical reactions taking place, which greatly simplifies computational complexity while maintaining reasonable accuracy.

×
SPE_logo_CMYK_trans_sm.png
Continue Reading with SPE Membership
SPE Members: Please sign in at the top of the page for access to this member-exclusive content. If you are not a member and you find JPT content valuable, we encourage you to become a part of the SPE member community to gain full access.