The spar is the only successful dry-tree solution for deepwater production that can operate successfully in the deepest fields and the most severe environments. Its deep draft results in natural periods outside the range of waves, which has led to its wide acceptance for different field scenarios. The complete paper is an extensive review of the evolution of spar designs, focusing on the progression of work that ultimately led to the application of a transformative concept to the oil industry.
Introduction
The spar can support a drilling rig as well as top-tensioned production risers in water depths thousands of feet greater than the water depth limit for a tension-leg platform (TLP). It is especially well equipped to support steel catenary risers (SCRs) using the pull-tube option, which allows the SCR to serve as a continuous welded steel containment for hydrocarbons from the seafloor to the topsides and protects the riser from vortex-induced vibration in the fastest part of the current profile. Broadly speaking, there are three configurations of spars: classic, truss, and cell, with the common feature being that the center of buoyancy is higher than center of gravity.