The authors present the results of a detailed experimental study in which underlying pore-level-displacement physics of two- and three-phase flow in a fractured rock sample is investigated with high-resolution X-ray microtomography techniques. A unique, three-phase coreflooding setup integrated with a microcomputed-tomography (micro-CT) scanner is used to conduct flow experiments on a miniature, partially fractured sandstone sample to shed light on subtle displacement mechanisms governing matrix/fracture interactions in the presence or absence of spreading oil layers.
Experimental Methodology
Rock and Fluid Properties. A water-wet Berea sandstone core plug, 38 mm in diameter and 100 mm in length, was subjected to continuous, nonuniform stress to create a fracture parallel to the stress axis. The artificial fracture was induced such that it ran through only half of the core plug.