Ensemble-based methods are considered to be state-of-the-art history-matching algorithms. However, in practice, they often suffer from ensemble collapse, a phenomenon that deteriorates history-matching performance. An ensemble history-matching algorithm is equipped customarily with a localization scheme to prevent ensemble collapse. To enhance the applicability of localization to various history-matching problems, the authors adopt an adaptive localization scheme that exploits the correlations between model variables and observations.
Introduction
In the current work, the authors focus on adopting an efficient adaptive localization scheme, previously established in the literature, for the full Norne Field case study.
×
Continue Reading with SPE Membership
SPE Members: Please sign in at the top of the page for access to this member-exclusive content. If you are not a member and you find JPT content valuable, we encourage you to become a part of the SPE member community to gain full access.