Field/project development

Data-Analytics Method Helps Engineers Optimize Well Placement Under Uncertainty

Well-placement optimization is one of the more challenging problems in the oil and gas industry. Although several optimization methods have been proposed, the most-used approach remains that of manual optimization by reservoir engineers.

jpt-2018-10-188265heroto.jpg

Well-placement optimization is one of the more challenging problems in the oil and gas industry. Although several optimization methods have been proposed, the most-used approach remains that of manual optimization by reservoir engineers. The work flow proposed here uses a machine-learning algorithm trained on simulated data to evaluate the performance of possible well locations and configurations.

Introduction

Extensive literature has been published about well-placement optimization; authors have proposed many different approaches (e.g., advanced optimization techniques, adjoint methods, experimental design, and streamline solutions). Real field experience, however, has shown that these techniques are rarely used. In practice, expert engineers usually identify the main factors affecting a future well’s production.

×
SPE_logo_CMYK_trans_sm.png
Continue Reading with SPE Membership
SPE Members: Please sign in at the top of the page for access to this member-exclusive content. If you are not a member and you find JPT content valuable, we encourage you to become a part of the SPE member community to gain full access.