Gas hydrates pose a serious flow-assurance problem in offshore environments where accessibility is restricted. The complete paper investigates gas-hydrate inhibition in a simulated offshore environment using a plant extract (PE) as a local inhibitor. The work aims to identify an effective biodegradable gas-hydrate inhibitor from locally sourced materials and ascertain its effectiveness compared with the conventional hydrate inhibitor monoethylene glycol (MEG). Experiments were conducted using a mini-flow loop, and involved mitigating hydrate formation using varying weight percentages of the inhibitor (1, 2, and 3 wt%) and evaluating their effect on hydrate inhibition in the mini-flow loop. Sensitivity charts for pressure, temperature, and time for both the PE and MEG were made.
