Directional/complex wells

A Methodology for Multilateral-Well Optimization

Multilateral wells with smart completions controlled by different flow-control technologies offer great operational flexibility, with each lateral able to be operated and optimized independently.

jpt-2017-05-merfocus-hero.jpg
Source: Getty Images.

Multilateral wells with smart completions controlled by different flow-control technologies offer great operational flexibility, with each lateral able to be operated and optimized independently. Understanding the contribution of each lateral in the complexity of the system was a major objective of this study. In order to optimize the system and predict results under different operational conditions, a multilateral-well-modeling methodology was developed. This methodology covers two main factors affecting multilateral productivity—a flow-dependent gas/oil ratio (GOR) and interference between the laterals.

Wells Overview

The study was based on multilateral wells complete with inflow control valves (ICVs). As a general description, the wells are completed with three to seven laterals and each lateral is isolated by packers and controlled by an ICV, as shown in Fig.

×
SPE_logo_CMYK_trans_sm.png
Continue Reading with SPE Membership
SPE Members: Please sign in at the top of the page for access to this member-exclusive content. If you are not a member and you find JPT content valuable, we encourage you to become a part of the SPE member community to gain full access.