Drilling

Thailand Joint-Development Project Delivers MWD/LWD Benefits

A joint-development project has delivered a high-temperature measurement-while-drilling/logging-while-drilling (MWD/LWD) suite rated for 200°C. Results to date are compared with previous performance in the Gulf of Thailand (GoT).

jpt-2019-02-191054f1.jpg

A joint-development project has delivered a high-temperature measurement-while-drilling/logging-while-drilling (MWD/LWD) suite rated for 200°C. Results to date are compared with previous performance in the Gulf of Thailand (GoT). The new suite required a complete redesign of printed circuit board (PCB) electronics in order to meet the temperature-qualification criteria of 200 hours at 200°C with a survivability of 210°C for 4 hours.

Background

When the joint development of extreme-high-temperature tools began in May 2014, the goal of the collaboration was to eliminate wireline in wells with temperatures over 175°C. Historically, the need for wireline was driven by the requirement to identify hydrocarbons, measure reservoir properties, and book reserves in high-temperature wells; this was accomplished by using a wireline string consisting of gamma ray (GR), resistivity, formation-density, and neutron-porosity sensors. Because of the 175°C temperature limits of the available LWD technology at that time, there was no viable option to log these wells while drilling. This resulted in valuable rig time spent on additional trips to change out bottomhole assemblies (BHAs), mitigate temperatures, and run wireline to gather this data. This also increased the exposure to nonproductive-time (NPT) events, stuck wireline tools, or loss of data if these tools did not reach bottom.

×
SPE_logo_CMYK_trans_sm.png
Continue Reading with SPE Membership
SPE Members: Please sign in at the top of the page for access to this member-exclusive content. If you are not a member and you find JPT content valuable, we encourage you to become a part of the SPE member community to gain full access.