The complete paper proposes an azimuthal plane-wave-destruction (AzPWD) seismic-diffraction-imaging work flow to efficiently emphasize small-scale features associated with subsurface discontinuities such as faults, channel edges, and fracture swarms and to determine their orientation by properly accounting for edge-diffraction phenomena. The work flow is applied to characterize an unconventional tight-gas-sand reservoir in the Cooper Basin in Western Australia. Extracted orientations of edges provide valuable additional information, which can be used by the interpreter to locate finer-scale features and distinguish them from noise.
Introduction
Unconventional reservoirs may exhibit high structural variability, which is difficult to characterize with a discrete wells network. 3D reflection seismology allows the extraction of additional information about the subsurface with significantly denser spatial sampling intervals.
![SPE_logo_CMYK_trans_sm.png](https://assets.spe.org/dims4/default/ee2fb85/2147483647/strip/true/crop/94x50+0+0/resize/135x72!/quality/90/?url=http%3A%2F%2Fspe-brightspot.s3.us-east-2.amazonaws.com%2F5c%2Ff3%2Fc860bf2344e5a46209f8f5fb5fec%2Fspe-logo-cmyk-trans-sm.png)