Reservoir characterization

Combined Approach Improves Fault Description for Horizontal-Well Geosteering

This paper presents an interdisciplinary approach to the description of tectonic dislocations made on the basis of interpretation of seismic data, petrophysical analysis of well-logging data in horizontal wells, and inversion of a multifrequency propagation tool.

jpt-2019-01-191695hero.jpg

This paper presents an interdisciplinary approach to the description of tectonic dislocations made on the basis of interpretation of seismic data, petrophysical analysis of well-logging data in horizontal wells, and inversion of a multifrequency propagation tool. A consistent approach to fault identification and description is presented on the basis of seismic surveys and logging-while-drilling (LWD) data in horizontal wells in a western Siberian oil field.

Seismic Methods of Tectonic-Fault Interpretation

Estimation of seismic methods of fault detection was performed on materials acquired from one of the fields in the Frolov oil-and-gas district. The observed territory of the oil field is characterized by complex geological structure—namely low effective reservoir thickness, thin layering of sandstones and silts, low porosity, low-permeability reservoir zones, and tectonic block structure.

When drilling in reservoirs of low thickness, knowing the precise position of the horizontal wellbore relative to the structure is critical. The basis of drilling planning is a structural map of the reservoir top.

×
SPE_logo_CMYK_trans_sm.png
Continue Reading with SPE Membership
SPE Members: Please sign in at the top of the page for access to this member-exclusive content. If you are not a member and you find JPT content valuable, we encourage you to become a part of the SPE member community to gain full access.