Field/project development

Machine Learning, Numerical Simulation Integrated To Estimate Child-Well Depletion

The authors of this paper analyze a robust, well-distributed parent/child well data set using a combination of available empirical data and numerical simulation outputs to develop a predictive machine-learning model.

Classification of child-well types in relation to parent wells. Type 1: Child well completed in between two parent wells. Type 2: Child well completed adjacent to a parent well along with concurrently completed infill wells. Type 3: Child well completed adjacent to a single parent well.
Fig. 1—Classification of child-well types in relation to parent wells. Type 1: Child well completed in between two parent wells. Type 2: Child well completed adjacent to a parent well along with concurrently completed infill wells. Type 3: Child well completed adjacent to a single parent well.
URTeC 3719366.

In the complete paper, the authors analyzed a robust, well-distributed parent/child well data set of the Delaware Basin Wolfcamp formation using a combination of available empirical data and numerical simulation outputs, which was used to develop a predictive machine-learning model (consisting of a multiple linear regression model and a simple neural network). This model has been implemented successfully in field developments to optimize child-well placement and has enabled improvements in performance predictions and net present value.

Introduction

Pervasive parent/child well pairs have complicated the development of the Delaware Basin Wolfcamp formation by introducing the need to forecast child-well performance reliably. This problem is made more difficult by the complex nature of the physical processes involved in parent/child well interactions and the variety of geometrical configurations that can be realized. In broad terms, the following three classifications of child wells can be recognized based on their spatial relationship to the associated parent well and other offset wells (Fig. 1 above):

  • Type 1—Child wells completed in between two parent wells
  • Type 2—Child wells completed adjacent to a parent well along with concurrently completed or codeveloped infill wells
  • Type 3—Child wells completed adjacent to a single parent well

To narrow the range of complexities in the study, the authors focused on Type 2 child wells because this configuration will be used most often in future development activities and because it had the most existing field examples.

The principal objective of this assessment was to generate accurate quantitative predictions of the diminished production performance of child wells because of pre-existing parent wells.

In this work, a novel, hybrid approach is detailed involving a combination of machine-learning techniques and numerical simulations.

×
SPE_logo_CMYK_trans_sm.png
Continue Reading with SPE Membership
SPE Members: Please sign in at the top of the page for access to this member-exclusive content. If you are not a member and you find JPT content valuable, we encourage you to become a part of the SPE member community to gain full access.