Flow assurance

Decision Tree Regressions Estimate Liquid Holdup in Two-Phase Gas/Liquid Flows

In the authors’ study, a machine-learning predictive model—boosted decision tree regression—is trained, tested, and evaluated in predicting liquid holdup in multiphase flows in oil and gas wells.

CPU and Computer chip concept Central Computer Processor 3D rendering
Getty Images.

In the authors’ study, a machine-learning predictive model—boosted decision tree regression (BDTR)—is trained, tested, and evaluated in predicting liquid holdup (HL) in multiphase flows in oil and gas wells. Results show that the proposed BDTR model outperforms the best empirical correlations and the fuzzy-logic model used in estimating HL in gas/liquid multiphase flows. Using the BDTR model with its interpretable representation, the heuristic feature importance of the input features used in building the model can be determined clearly.

Introduction

Machine-learning approaches in predicting HL in multiphase flows have been recently studied to improve prediction accuracy compared with existing empirical correlations. However, these approaches ignore the heuristic feature importance of the input parameters to the predicted HL values.

×
SPE_logo_CMYK_trans_sm.png
Continue Reading with SPE Membership
SPE Members: Please sign in at the top of the page for access to this member-exclusive content. If you are not a member and you find JPT content valuable, we encourage you to become a part of the SPE member community to gain full access.