Introduction
The objective of this study is the numerical simulation of hydrate-flow-induced vibration and stress analysis of an M-shaped jumper of a subsea oil and gas pipeline. These objective is divided into the following tasks:
Developing a steady-state and transient model of hydrate flow using multiphase-modeling techniques to capture the realistic phenomena and validating the simulation results with experimental results available in the literature
Conducting sensitivity analysis of flow-condition parameters, such as hydrate volume fraction and flow velocity, in order to minimize flow-assurance challenges
Conducting stress analysis of the pipeline using a fluid/structure interaction static structural model
The CFD simulation is coupled with a finite-element-analysis (FEA) -based program, and sensitivity analysis is performed using different pipeline construction materials.
CFD-Modeling Methodology
In this study, a straight pipeline was used first for validation. Later, an M-shaped jumper is simulated as an offshore pipeline. The computational grid of the M-shaped jumper consisted of 180,720 hexahedral nodes.
The M-shaped jumper used for the simulation has a diameter of 25 cm with a suspended span of 30 m and six sharp elbows.