This paper focuses on compressor systems associated with major production deferments. An advanced machine-learning approach is presented for determining anomalous behavior to predict a potential trip and probable root cause with sufficient warning to allow for intervention. This predictive-maintenance approach has the potential to reduce downtime associated with rotating-equipment failures.
Introduction
The first step in using a machine-learning system is to train the model to identify normal and abnormal operating conditions. The model can then classify real-time data from the equipment and indicate when the equipment’s performance strays outside the identified steady state.
×
Continue Reading with SPE Membership
SPE Members: Please sign in at the top of the page for access to this member-exclusive content. If you are not a member and you find JPT content valuable, we encourage you to become a part of the SPE member community to gain full access.