Horizontal wells in liquids-rich shale plays are now being drilled such that lateral and vertical distances between adjacent wells are significantly reduced. In multistacked reservoirs, fracture height and orientation from geomechanical effects coupled with natural fractures create additional complications; therefore, predicting well performance using numerical simulation becomes challenging. This paper describes numerical-simulation results from a three-well pad in a stacked liquids-rich reservoir (containing gas condensates) to understand the interaction between wells and production behavior.
Numerical Simulation
The reservoir simulator used for this study was designed to handle unstructured-grid-based simulation cases. Most of the numerical reservoir simulators that are used for modeling horizontal wells with multiple hydraulic fractures are based on structured grid cells in which the hydraulic fractures are modeled as symmetric biwing fractures perpendicular to the wellbore.
